Les bases de la réaction en chaîne de la polymérase (PCR)

Ordre du jour

Les bases de la PCR Partie I	Notions de base de la biologie moléculaire
	Définition de la PCR
	Phases de la PCR
Les bases de la PCR Partie II	Définition de la PCR en temps réel
	PCR en temps réel qualitative
	PCR en temps réel quantitative
Les bases de la PCR Partie III	Définition de la température de fusion
	Analyse de la courbe de fusion

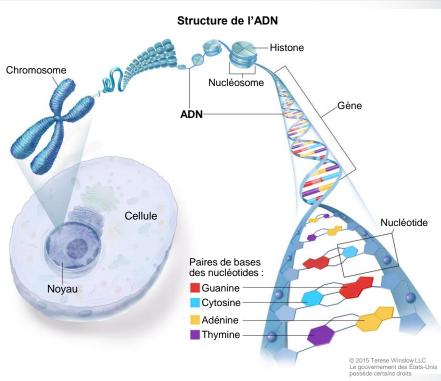
Objectifs de la formation

L'objectif général de ce module est de vous aider à comprendre les méthodes de PCR utilisées avec le GeneXpert

À la fin de la formation, vous serez en mesure de :

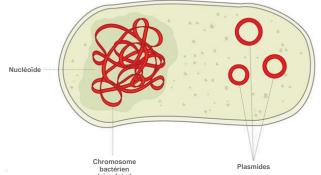
- Répertorier les éléments impliqués dans le processus de PCR
- Expliquer le processus de PCR et décrire ses étapes
- Définir la « RT-PCR » (2 significations possibles)
- Décrire les courbes de RT-PCR, définir le Ct
- Expliquer la manière dont la quantification peut être réalisée grâce à la RT-PCR
- Définir la température de fusion
- Expliquer la manière dont l'analyse de la courbe de fusion permet d'identifier une résistance microbienne

Les bases de la réaction en chaîne de la polymérase (PCR) - I



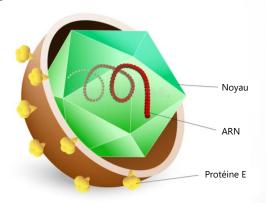
Notions de base de la biologie moléculaire

Information génétique contenue dans l'ADN


- L'ADN possède une structure en double hélice
- L'ADN code l'information génétique (gènes différents, informations distinctes)
- L'ADN est organisé en longues chaînes appelées chromosomes
- Le noyau des cellules humaines contient 23 paires de chromosomes

Matériel génétique présent dans les bactéries

- L'information génétique présente dans les bactéries est codée dans l'ADN
- La plupart des bactéries possèdent un génome constitué d'une molécule d'ADN circulaire unique, située dans une région appelée « nucléoïde » (non délimitée par une membrane)
- Les éléments génétiques extrachromosomiques, tels que les plasmides et les bactériophages, déterminent souvent la résistance aux agents antimicrobiens, la production de facteurs de virulence ou d'autres



fonctions.

Dreamstime

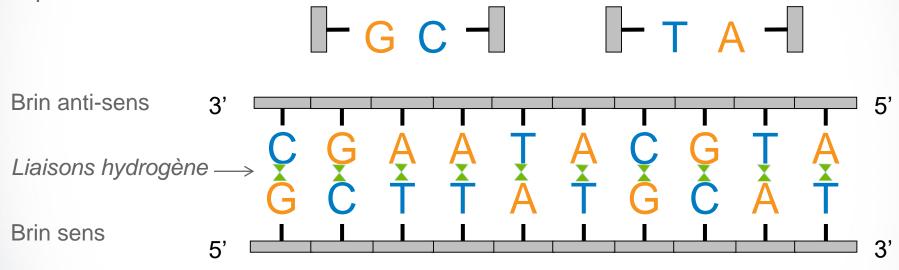
Matériel génétique présent dans les virus

- Un virus est un petit parasite incapable de se reproduire par lui-même. Il dépend de la machinerie des cellules hôtes.
- Un génome viral peut exister sous plusieurs formes : ARN ou ADN, simple brin ou double brin, linéaire ou circulaire, ou même segmenté

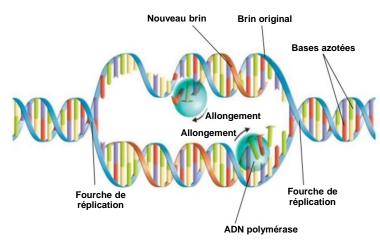
Éléments constitutifs de l'ADN

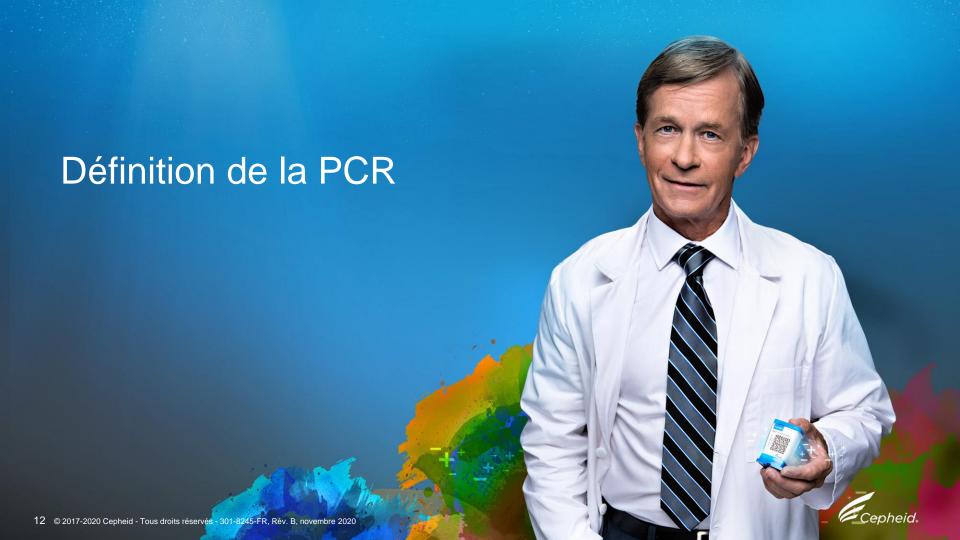
L'ADN est constitué de 4 nucléotides

- -A = Adénine
- T = Thymine
- C = Cytosine
- G = Guanine


Les 4 bases sont reliées entre elles pour former une séquence (ADN simple brin)

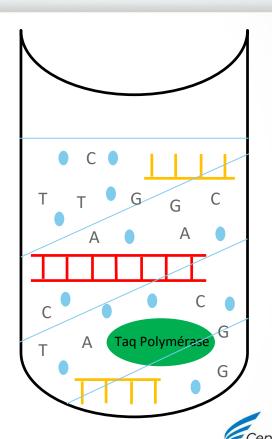
Notions de base de la biologie moléculaire


La majorité de l'ADN se présente sous <u>forme double brin</u> et est apparié de manière unique :


Réplication de l'ADN

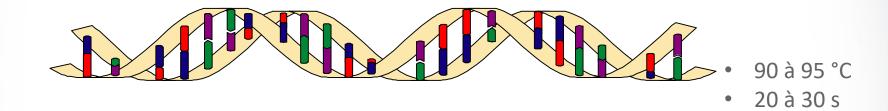
- Un nouvel ADN est fabriqué par des enzymes appelées ADN polymérases. Elles synthétisent l'ADN uniquement dans le sens 5' vers 3'.
- Une autre enzyme appelée primase synthétise une amorce d'ARN qui permet à la réaction exécutée par la polymérase de démarrer.
- Lorsque l'amorce d'ARN est en place, l'ADN polymérase la « prolonge » en ajoutant des nucléotides un par un pour fabriquer un nouveau brin d'ADN complémentaire du brin matrice.

Copyright Pearson Prentice Hall

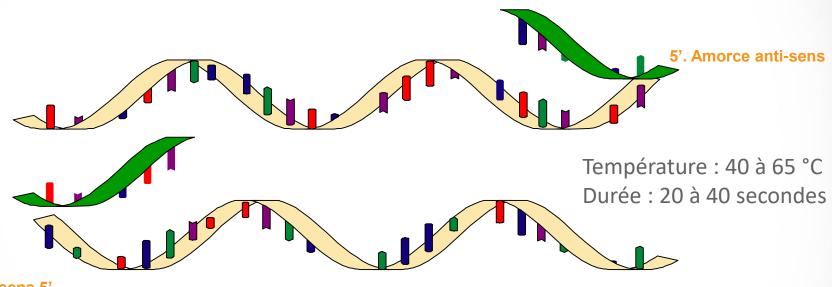

Qu'appelle-t-on PCR?

- La PCR (réaction en chaîne de la polymérase) est une réaction en chaîne qui produit plusieurs copies d'une séquence spécifique d'ADN présente dans l'échantillon.
- 2. L'amplification de l'ADN se produit au cours de cycles thermiques répétés
- 3. Le nombre de copies de la séquence spécifique double après chaque cycle
- 4. Au bout de quarante cycles, une seule copie est transformée en 2 trillions de copies environ

Composants d'une réaction PCR

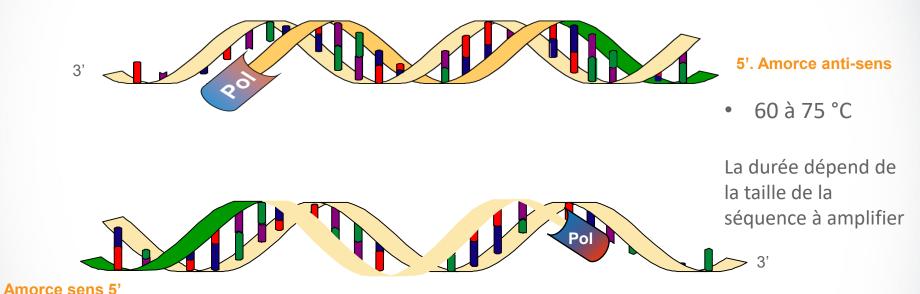

- Matrice d'ADN (gène viral, bactérien ou humain)
- dNTP (un mélange des quatre nucléotides nécessaires pour synthétiser de nouveaux brins d'ADN : A, T, C, G)
- Amorces (oligonucléotides de 20 nucléotides environ, qui s'hybrideront à l'ADN cible)
- Polymérase (Taq polymérase thermostable naturelle capable de fonctionner à une température optimale d'environ 70 °C)
- Tampon (Mg2+, Tris-HCl, Triton : fournit les conditions optimales au fonctionnement de la polymérase)

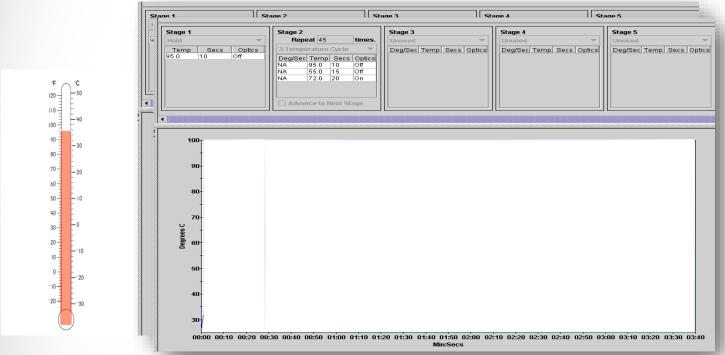
La première phase d'un cycle de PCR - dénaturation


séparation des brins d'ADN

La deuxième phase d'un cycle de PCR - hybridation

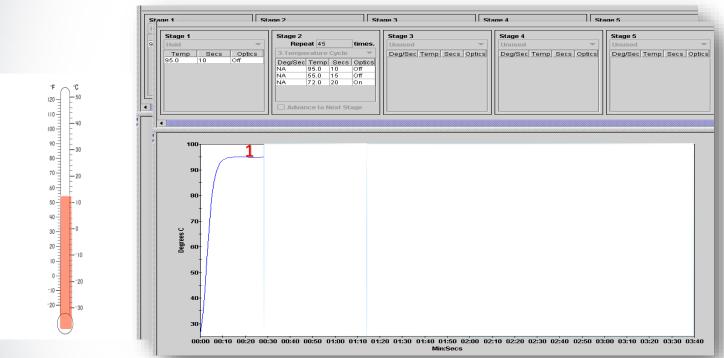
liaison d'amorces spécifiques





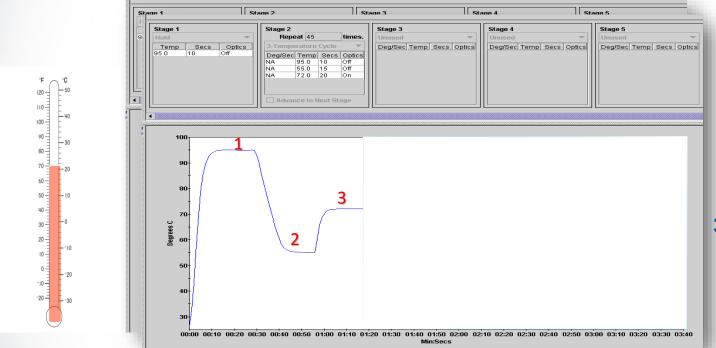
La troisième phase d'un cycle de PCR - extension

Synthèse des brins d'ADN



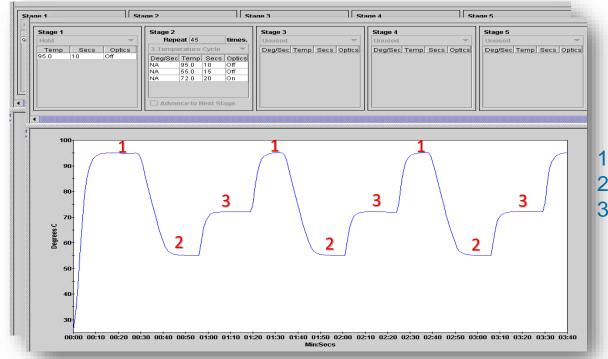
1. Dénaturation

Remarque : une PCR comporte généralement 30 à 40 cycles



2. Hybridation

Remarque : une PCR comporte généralement 30 à 40 cycles



3. Extension

Remarque : une PCR comporte généralement 30 à 40 cycles

Dénaturation Hybridation

Extension

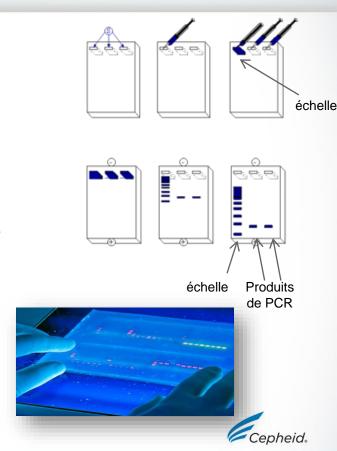
Remarque : une PCR est généralement constituée de 30 à 40 cycles

Nombre de copies d'ADN obtenues par PCR

- En théorie, le nombre de copies d'ADN cible double à chaque cycle, ce qui correspond à un facteur d'efficacité PCR E = 2

- Concentration de départ (0 cycle) = C₀
- Après un cycle : C₀ x 2
- Après 2 cycles : C₀ x 4
- Après 3 cycles : C₀ x 8
- Après n cycles : C₀ x 2ⁿ

Facteurs influençant l'efficacité de la PCR


- Conception du test (fabricant)
 - Conception de l'amorce/de la sonde
 - Type d'ADN polymérase
 - Qualité des réactifs
 - Mélange maître (ou Master Mix)
 - Conditions des cycles de PCR : températures et durée des phases
- Phase pré-analytique (technicien de laboratoire)
 - Qualité des réactifs, en raison des conditions de transport et de conservation
 - Qualité des échantillons : présence d'inhibiteurs de PCR

Détection du produit en point final

Dans la PCR classique, la détection est effectuée en <u>point final</u> (fin de PCR)

- Un mélange de fragments de tailles connues (échelle) est chargé dans un gel d'agarose, à titre d'étalon, pour calculer la taille des produits de PCR.
- 2. Le produit de PCR est également chargé dans le gel
- 3. On applique un champ électrique, ce qui entraîne la migration des molécules chargées négativement vers le pôle positif
- 4. Le produit de PCR migre en fonction de sa taille
- 5. L'ADN est coloré à l'aide de bromure d'éthidium, visible sous une lampe UV
- 6. Si la cible que nous recherchons est présente dans l'échantillon, un produit de PCR de la taille prévue est présent

